Low-frequency radio surveys & (potential) synergies with eROSITA

Natasha Hurley-Walker

Associate Professor, ARC Future Fellow

MWA & SKA-Low

Murchison Widefield Array; mwatelescope.org

128 → 256 tiles (by end of 2024) Operational until ~2029

MWA & SKA-Low

Murchison Widefield Array; mwatelescope.org

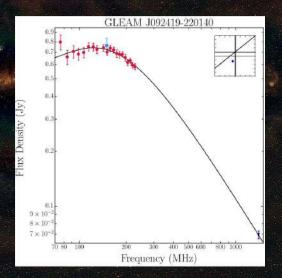
Square Kilometer Array (LOW); skatelescope.org Stations ~20m wide → smaller FOV but far more flexibility 128 → 256 tiles (by end of 2024) Operational until ~2029

Milestone Event		SKA-Low (end date)
AA0.5	mi Green (SKAO) 4 dishes 6 stations	2024 Nov
AA1	8 dishes 18 stations	2025 Nov
AA2	64 dishes 64 stations	2026 Oct
AA *	144 dishes 307 stations	2028 Jan
Operations Readiness Review		2028 Apr
End of Construction		2029 Mar
→ 60	uJy/beam RMS s	surveys

Images

- 72 231 MHz
- 8-MHz sub-bands
- 30- and 60-MHz wide-band images

Catalogue

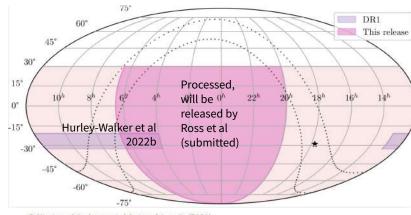

- 307,455 sources
- ~35mJy/beam flux limit
- 20 flux densities
- Spectral indices for ~70% of sources

https://www.mwatelescope.org/gleam


Survey description: Wayth et al. 2015 Large data releases: Hurley-Walker et al. 2017, 2019, For et al. 2018, Franzen et al. 2020 Circular polarisation: Lenc et al. 2018 Linear polarisation (POGS-X): Riseley et al. 2018, 2020 ~50 science papers & >500 citations to data releases

Ğ, L* E×A 🕅

GaLactic and Extragalactic All-sky MWA survey



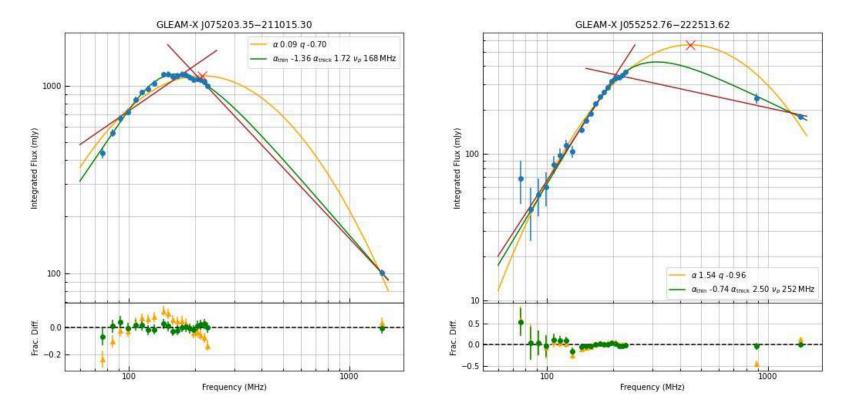
GL'EAM -X: GaLactic and Extragalactic All-Sky MWA eXtended survey

GLEAM and GLEAM-X compared for ~20 sq. deg.

Resolution **45**" (2x better than GLEAM) RMS noise **1 mJy/beam** (10x deeper than GLEAM)

Publications of the Astronomical Society of Australia (PASA) doi: 10.1017/pas.2022.xxx.

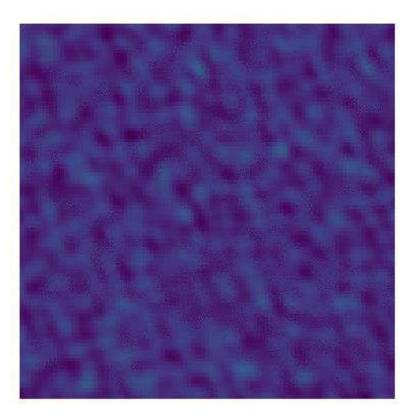
GaLactic and Extragalactic All-sky Murchison Widefield Array survey eXtended (GLEAM-X) I: Survey Description and Initial Data Release


N. Hurley-Walker¹, T. J. Galvin^{1,2}, S. W. Duchesne^{1,2}, X. Zhang^{2,3}, J. Morgan¹, P. J. Hancock^{1,4}, T. An³, T. M. O. Franzen⁵, G. Heald², K. Ross¹, T. Vernstrom^{2,6}, G. E. Anderson¹, B. M. Gaensler⁷, M. Johnston-Hollitt⁴, D. L. Kaplan⁸, C. J. Riseley^{2,9,10}, S. J. Tingay¹, M. Walker¹ Email: nhw@icrar.org

¹ International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia

² CSIRO Space & Astronomy, PO Box 1130, Bentley WA 6102, Australia

³ Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Rd, Shanghai, 200030, China


Two radio galaxy SEDs (from 500,000+ so far)

Using *Aegean* Priorised fitting (Hancock+2020)

Tim Galvin

Found in GLEAM-X: New (type of) long-period radio transient

• Detection of a new class of radio-loud object:

- 18.18-minute period
- 90% linearly polarised
- \circ Spectral index ~ -1.2
- \circ Pulse luminosity up to 4 x 10³¹ erg/s
- Activity window of ~3 months (in ~8yr)
- Interpreted as an

ultra-long period magnetar

- A new population waiting to be found?
- Potential FRB progenitor(s)

Article

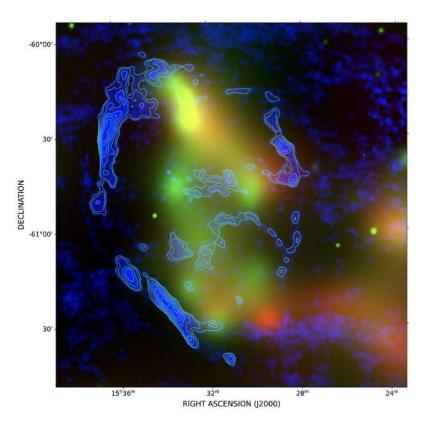
A radio transient with unusually slow periodic emission

https://doi.org/10.1038/s41586-021-04272-	x
Received: 30 July 2021	-
Accepted: 19 November 2021	_
Published online: 26 January 2022	

N. Hurley-Walker³⁵³, X. Zhang^{2,3}, A. Bahramian¹, S. J. McSweeney¹, T. N. O'Doherty¹, P. J. Hancock¹, J. S. Morgan¹, G. E. Anderson¹, G. H. Heald² & T. J. Galvin¹

The high-frequency radio sky is bursting with synchrotron transients from massive stellar avalacians and accretion events, but the low-frequency radio sky has so far

Galactic Plane processing


GLEAM alone in this region: Resolution: 2', noise ~ 30 mJy/beam Joint deconvolution of GLEAM-X & GLEAM Resolution: 1', noise ~ 5 mJy/beam Silvia Mantovanini via Image Domain Gridding (van der Tol et al. 2019)

Joint radio/ eROSITA detection

- Project 2020/06: Radio and X-ray Observations of SNRs and SNR Candidates
- Non-thermal emission → particle acceleration
- X-ray spectroscopy investigates the composition of the object and its evolution
- Both provide age and distance estimates

G321.3-3.9

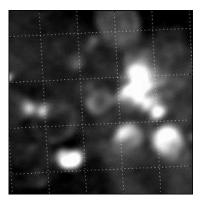
- Elliptical shell shaped
- 1 kpc < Distance < 1.7 kpc
- 14 kyr < age < 75 kyr
- Radio α = -0.83 ± 0.39

Mantovanini et al. 2024 (in review) https://arxiv.org/abs/2401.17294

Galactic Plane Monitoring at 200 MHz

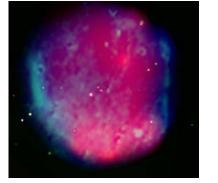
A set of the set of

-C!*


- 10 pointings
- 30 minutes integration per pointing
- Bi-weekly cadence
- 2022 July to September
- = 12 hours integration time
- Shown: ~2/3rds of the data, integrated mosaic

the the second state of the second second

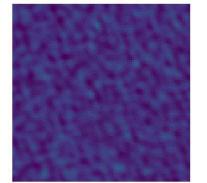
- Noise level ~2 mJy/beam (away from bright sources)
- Next epoch: April September 2024 → 33 hours integration time!


Hurley-Walker et al. in prep: survey description and first data release Mantovanini et al. in prep: 20 new supernova remnants

Low-frequency Galactic Science prospects

Radio spectral imaging

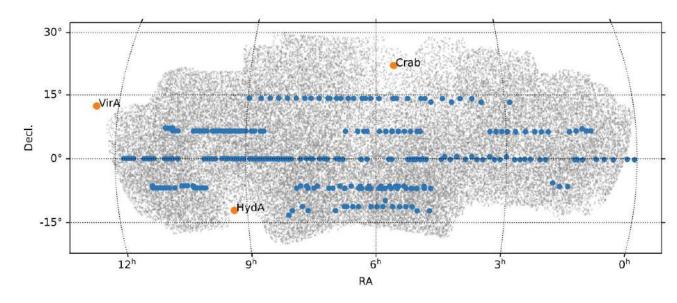
- Disentangle synchrotron SNRs from thermal HII regions
- Perform Cosmic Ray Tomography (Su et al. 2017, 2018)
- Explore unshocked ejecta in 3D (Arias et al. 2019)
- Probe interactions with environment (Castelletti et al. 2021)



High-latitude SNRs

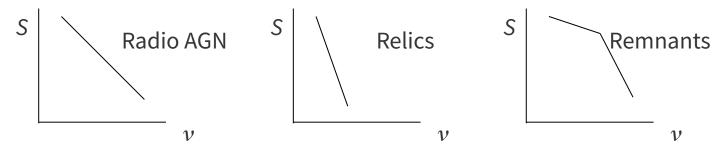
- Low surface-brightness (e.g. Hurley-Walker et al. 2019a)
- Potentially large and nearby (Becker, Hurley-Walker et al. 2021)
- "Quiet" environment to probe emission processes in otherwise inaccessible ISM (Araya, Hurley-Walker et al. 2022)

- Low frequencies -> find steep-spectrum sources
- Higher resolution (45") but *also* large spatial scales
- Lower noise (~5 mJy/beam)
- Southern Galactic plane (and indeed sky 34k deg²)

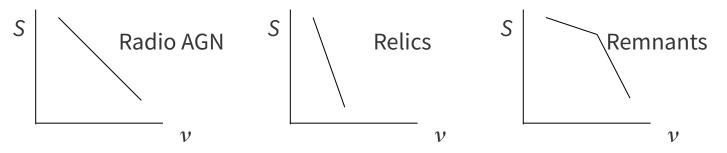

Long-period radio transients

- Monitoring campaigns with MWA at 200 MHz
- Transient searches at second to hour cadence
- New detection: GPMJ1839-10; more in preparation!

Interplanetary Scintillation Survey at 162 MHz


RMS image vs. normal image Credit: John Morgan (CSIRO)

- Compact sources "twinkle" in the solar wind;
- IPS survey consists of 162 MHz imaging along the ecliptic;
- Scintillation enhancement → source structure on sub-arcsec scales;
- Contact John Morgan for IPS DR2 (larger area).


Ideas for low-frequency surveys & eROSITA synergies

- Population (wide-area) studies of galaxy clusters:
 - GLEAM-X (+ RACS, EMU) provide broadband SEDs; IPS excludes compact sources
 - eROSITA provides measure of cluster mass, cavity formation, merger status
 - → e.g. examine radio power cavity power scaling, see how cluster environment changes AGN lifecycles, find new radio relics

Ideas for low-frequency surveys & eROSITA synergies

- Population (wide-area) studies of galaxy clusters:
 - GLEAM-X (+ RACS, EMU) provide broadband SEDs; IPS excludes compact sources
 - eROSITA provides measure of cluster mass, cavity formation, merger status
 - → e.g. examine radio power cavity power scaling, see how cluster environment changes AGN lifecycles, find new radio relics

- Searching for aligned-rotator pulsars, magnetars and other compact objects:
 - eROSITA point sources show high-energy emission
 - IPS determines compactness; GLEAM-X can determine pulsar-like spectrum

Data access

Images:

- GLEAM: Skyview, Aladin HIPS will be updated soon, on AAO data central ~April
- GLEAM-X: <u>https://datacentral.org.au/search/cone/</u> (DR1 now; DR2 ~May)
- GPM: Contact me (<u>nhw@icrar.org</u>)
- IPS: Contact John (john.morgan@csiro.au)

Catalogues: Vizier / CDS