

Studies of SNRs with eROSITA and more...

The eROSITA view of non-thermal SNRs

The SNR G279.0+01.1: Introduction

-Size of XMM-Newton field of view

Grey scale: optical - H α (SHS survey data)

erosit

Red contours: radio continuum (PMN data)

- Angular size: $\sim 3^{\circ}$
- \blacktriangleright Distance: ~2.7 kpc (from literature)
 - ➔ Largest Galactic SNR ever detected?
- ➤ Age: ~10⁶ years (from literature)

No X-ray counterpart reported in the literature

The SNR G279.0+01.1: eROSITA view

Angular size: $\sim 3^{\circ}$

- Distance: ~2.7 kpc (from literature)
 - ➔ Largest Galactic SNR ever detected?
- Age: $\sim 10^6$ years (from literature)
 - ^a ~100000 counts to work with

erosita

The SNR G279.0+01.1: X-ray knowledge without eROSITA

Declination

Right ascension

An aposteriori detection of the remnant with ROSAT:

- Grey scale: ROSAT All-Sky Survey (image optimized after eROSITA findings; no point sources subtracted)
- 1100 counts, no source discovery in literature
- Yellow circles: XMM-Newton pointings

eROSIT/

The SNR G279.0+01.1: eRASS:4 imaging and spectra

eRASS:4, 0.3-1.1 keV exposure-corrected intensity sky map

The SNR G279.0+01.1: eRASS:4 imaging and spectra

eRASS:4:

Two-temperature plasma in nonequilibrium

0.4

0.5

0.6

0.7

Energy (keV)

- Several temperatures (not surprising)
- ➔ Ejecta (O, Ne, Mg)
- → Non-equilibrium
 - \rightarrow still compatible with usual old-age SNR

0.8 0.9 1.0

eRASS:4 X-ray spectrum: Entire SNR

eROSITA

The SNR G279.0+01.1: eRASS:4 imaging and spectra

R: 0.44-0.62 keV (OVII) G: 0.62-0.8 keV (OVIII) B: 0.8-1.1 keV (NeIX+X)

- High spectral resolution (OVII, OVIII, NeIX+X)
- typical composition for core-collapse³

γ-ray emission: the connection to cosmic-ray physics

- $\blacktriangleright \quad \mbox{Fermi-LAT} \rightarrow \mbox{``commonly'' interpreted as hadronically γ-ray emission}$
- High density of cosmic ray particles because of
 - (past or present) acceleration in the SNR
 or
 - → interaction of "sea" CRs with high-density gas?

erosita

γ-ray emission: the connection to cosmic-ray physics

- $\blacktriangleright \quad \mbox{Fermi-LAT} \rightarrow \mbox{``commonly'' interpreted as hadronically γ-ray emission}$
- High density of cosmic ray particles because of
 - (past or present) acceleration in the SNR
 or
 - → interaction of "sea" CRs with high-density gas?

erosita

- Application of standard hydrodynamic model (Leahy & Williams (2017)). Homogeneous circumstellar medium, kinetic explosion energy 10⁵¹ erg
- > Main parameters: distance and density of the circumstellar medium
- Adopting literature value for distance (2.7 kpc, supported by measured X-ray absorption) and density of 0.4 cm⁻³:
 - \rightarrow age ~10⁶ years
 - ➔ linear size ~140 pc
- Odd: Gamma-ray emission, X-ray emission from non-equilibrium ionisation plasma
- Check the pulsar association (used in the literature to confirm the 2.7 kpc distance)
 - pulsar association plausible, since X-ray spectra dominated by light elements (O, Ne, Mg)
 - \rightarrow Core-Collapse SNR

New scenario: smaller distance→smaller age

	Pulsar	D (NEW!)	D (old)	Age	Vtransv] ⊳
0.0000000		kpc	kpc	Myr	$km \cdot s^{-1}$	
J0941-5244 ♦	J0955-5304	0.40	3.31	3.87	1.5	1 7
	J0957-5432	0.45	4.33	1.66	4.1	ן ה
	J0954-5430	0.43	3.96	0.17	48.8	
	J1001-5507	0.41	2.78	0.44	23.5	1 9
	J1000-5149	0.13	1.93	4.22	1.0	
J0940-5428	J1001-5559	0.43	3.32	30.6	0.6	
	J1002-5559	3.27	9.83	7.84	16.9	
	J1016-5345	0.12	1.94	6.33	0.8	
	J0941-5244	0.40	3.14	9.17	2.1	
	J0940-5428	0.38	2.95	0.04	455.5	

Updated distances

Results:

- Likely associations: J0954-5430, J1001-5507, or J0940-5428
- Distance: 0.4 kpc!
- SNR Age: 10⁴ 5 · 10⁵ yrs (linear size: ~20 pc)

Better consistency with observations

eRO-STEP FOR2990

A multiwavelength view of G279.0+01.1

R: 0.3-1.1 keV eRASS:4, G: 100 µm IRAS, B: >5 GeV Fermi-LAT. White contours: radio continuum (ASKAP)

eROSIT

Conclusions: Detection of G279.0+01.1 in X-rays

- X-ray counterpart detection with eROSITA (confirmed with ROSAT and XMM-Newton), ~3 deg size
 - > Soft thermal X-rays (two temperature plasma) in the 0.3-1.1 keV energy band
- GeV counterpart (confirmed, refined, updated GeV SED)
- Radio counterpart (refined \rightarrow larger size consistent with X-rays)
- Updated remnant's center
- Modelling:

No1 scenario (old and distant):				
Dist:	2.7 kpc			
Size:	141 pc			
Age:	$> 7 \cdot 10^5$ yrs			
Pulsar:	No association			
NEI model:	questionable			
GeV emission:	questionable			

	No2 scenario (young and adjucent):					
	Dist:	0.4 kpc				
	Size:	20 pc				
	Age:	$10^4 - 7\cdot 10^5$ yrs				
$\boldsymbol{\nu}$	pulsar: J0954-5430, J1001-5507, J0940-5428					
	NEI model:	better fit				
	GeV emission:	better fit				

NEV

